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ABSTRACT 

The University of Iowa has successfully developed Reliability-Based Design Optimization 

(RBDO) method and software tools by utilizing the sensitivity analysis of the fatigue life; and 

applied RBDO to Army ground vehicle components to obtain reliable optimum designs with 
significantly reduced weight and improved fatigue life.  However, this method cannot be applied 

to broader Army application problems due to lack of sensitivity analysis in many application 

areas.  Thus, for broader Army applications, a sampling-based RBDO method using surrogate 

model has been developed recently.  The Dynamic Kriging (DKG) method is used to generate 

surrogate models, and a stochastic sensitivity analysis is used to compute the sensitivities of 

probabilistic constraints with respect to independent and correlated random variables.  Once the 

DKG method accurately approximates the responses, there is no further approximation in the 

estimation of the probabilistic constraints and stochastic sensitivities, and thus the sampling-

based RBDO can yield very accurate optimum design.  For computational efficiency of the 

sampling-based RBDO method for large-scale engineering problems, a parallel computing is 

proposed.  Numerical examples verify that the proposed sampling-based RBDO finds the optimum 

designs very accurately and efficiently. 

 
 

1. INTRODUCTION 
Significant advances in computing power provide design 

engineers and decision-makers opportunities to explore 

many more alternative simulation-based designs than they 
could do with hardware prototypes.  However, when the 

deterministic optimization method is used, the optimum 

designs are pushed to the limits of the design constraint 

boundaries, leaving very little or no room for physical input 

uncertainties such as manufacturing dimensional 

variabilities, material property variabilities, simulation 

model uncertainties, and operational load variabilities, as 

shown in Fig. 1.  Thus, the deterministic optimum designs 

obtained without consideration of these input uncertainties 

are unreliable.  Due to the extensive efforts of engineering 

disciplines over last three decades, design guidelines and/or 

standards have been modified to incorporate the concept of 

uncertainty in the early design stage.  Techniques have been 

explored to incorporate uncertainty analysis at an affordable 

computational cost and, more recently, to carry out design 

optimization with the additional requirement of reliability, 

which is referred to as reliability-based design optimization 

(RBDO) [1-10]. 

For the most probable point (MPP) based RBDO, to 
alleviate the slow convergence of the reliability index 

approach (RIA), the performance measure approach (PMA) 

is developed by carrying out the inverse reliability analysis 

[5-7] for a robust and efficient RBDO computational 

process.  For the inverse reliability analysis, the enhanced 

hybrid mean value (HMV+) method has been developed 

[11,12] to improve the computational efficiency and stability 

for highly nonlinear and non-monotonic performance 

functions [13,14].  The interpolation method of the HMV+ 

has been further improved by using the angle-based 

parameter and has been integrated in the enriched 

performance measure approach (PMA+) for RBDO [15,16].  

The PMA+ method has been demonstrated to be very robust 

and efficient [17]. 
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The reliability analysis using FORM is inaccurate if the 

performance function is highly nonlinear and multi-

dimensional.  Although the reliability analysis using SORM 

may be accurate, it is not easy to use since SORM requires 

the second-order sensitivities.  To overcome these 

drawbacks by maintaining the efficiency of FORM and the 

accuracy of SORM, the most probable point based 

dimension reduction method (MPP-based DRM) has been 

developed by the Iowa team [18-20]. 
For the input joint CDF model, the copula, which links 

between the joint CDF and marginal CDFs, is used [21,22].  

Since the copula requires only the marginal CDFs and 

correlation parameters to generate the joint CDF, the joint 

CDF can be obtained for practical industrial applications.  

To identify the correct joint CDF type using the limited test 

data, it is necessary to find a right copula that best describes 

the paired sampled data.  The two-step weight-based 

Bayesian method, which selects a right copula among 

candidate copulas based on the test data, is used [23]. 
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Figure 1. Ground Vehicle RBDO Process for Durability, 

Reliability, and Weight Reduction 

 

Over the years, the University of Iowa and U.S. Army 

Tank Automotive Research, Development, and Engineering 

Center (TARDEC) have been working together to develop a 

simulation-based RBDO process to minimize the Army 

ground vehicle weight while maintaining/improving 

durability and system-level reliability requirements, as 

shown in Fig. 1.  The durability analysis process that 

predicts fatigue failure of the ground vehicle components 
due to cyclic damage accumulations is a multidisciplinary 

simulation process, requiring an integration of a CAD tool 

and several CAE tools, such as multibody dynamic analysis, 

FEA, and durability analysis; and a large amount of data 

communication as shown in Fig. 1.  In addition, the design 

sensitivity analysis (DSA) [24,25] of the fatigue life with 

respect to the design variables (random or deterministic) and 

other random input variables is required to carry out the 

inverse reliability analysis using HMV+ and design 

optimization using PMA+ [14,15]. 

The propagation of the input uncertainty into the structural 

fatigue life is complicate and thus a challenging task to 

integrate the multidisciplinary software systems and develop 

the RBDO process for durability optimization.  The Iowa 

research team has developed the DRAW software system 

[26], which computes the transient dynamic stress and strain 
histories and fatigue life of mechanical components [27,28].  

In addition, the DSO software system that computes the 

design sensitivity of various performance measures, 

including fatigue life, has been implemented by using the 

continuum design sensitivity theories that the Iowa team has 

developed [29-31].  These two software systems are 

integrated with the commercial CAD-Pro/E [32], FEA-

NEiNastran [33], multibody dynamics code DADS [34], and 

design optimization code DOT [35], along with the PMA+ 

RBDO software system that was developed by the Iowa-

TARDEC collaborative research team (see Fig. 1).  This 

integrated software system was successfully applied to 

obtain reliable optimum designs with significantly reduced 

weight and improved fatigue life of U.S. Army High 

Mobility Trailer (HMT) drawbar [36], Stryker A-arm [37] 

shown in Fig. 1, and HMMWV A-arm [38] components. 

The system-level durability RBDO of the Army vehicle is 
a very compute-intensive process because it covers a number 

of critical vehicle components; with each component 

consisting of an FEA model possibly up-to hundreds of 

thousands of DOF.  Thus, it could take very long 

computational time to carry out the vehicle system-level 

durability RBDO on a single computer processor.  The Iowa 

and TARDEC research team initiated development and 

testing of a parallelized DRAW-DSO-RBDO integrated 

software system on the TARDEC High Performance Computing 

(HPC) as shown in Fig. 2.  The objective is to obtain a vehicle 

system-level reliability-based optimum design for weight 

reduction and durability of all critical components of the 

Army ground vehicle in short computational time.  

Successful scalability testing of the integrated and 

parallelized software system was carried out on the 

TARDEC HPC [39] to learn how to achieve the 

computational speed-up.  
With the success of the MPP-based RBDO methods and 

software tools, the Iowa team started extending them by 

developing a sampling-based system level RBDO method 

[40,41] to support broader ground vehicle applications as 

shown in Fig. 3.  For the sampling-based RBDO, the 

stochastic sensitivity analysis [40] is developed to compute 

sensitivities of probabilistic constraints with respect to 

independent and correlated random design variables; and the 

Dynamic Kriging (DKG) method is developed for surrogate 

modeling [42].   
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Figure 2. Parallelized DRAW-DSO-RBDO Integrated 

Software System on TARDEC HPC 

 

 

For Broader Applications of Modeling & Simulation-Based 

RBDO, Each Discipline Needs to Develop Sensitivity Method 
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Figure 3. Future Goals: Broader Applications of 

Reliability-Based Design Optimization 

 

2. DYNAMIC KRIGING METHOD 
In the Kriging method, the outcomes are considered as a 

realization of a stochastic process, and the predicted values 

are derived by applying the stochastic process theory.  

Consider n sample points with 
T nr

1 2
[ , ,..., ] ,

n i
 X x x x x R , and n responses 

T

1 2
[ ( ), ( ),..., ( )]

n
y y yy x x x with

1
( )

i
y x R .  Thus, the 

responses at samples are considered as a summation of two 

parts as 

 
y = Fβ + e

 (1) 

In Eq. (1), Fβ is the mean structure of the response, where 

=[ ( )], 1,..., , 1,..., ,
k i

f i n k K F x  is an n×K design matrix; 

and ( ) , 1,..., ,
k

f k Kx  represent the basis functions, which 

are usually in a simple polynomial form, such as 
2

1, , ,...,x x .  

Also, 
T

1 2
[ , ,..., ]

K
  β is the vector of regression 

coefficients; and 
T

1 2
[ ( ), ( ),..., ( )]

n
e e ee x x x  is a realization 

of the stochastic process ( )e x  that is assumed to have zero 

mean [ ( )] 0
i

E e x .  The covariance structure is 

2
[ ( ) ( )] ( , , )

i j i j
E e e Rx x θ x x , where 

2
  is the process 

variance;  
1 2
, ,...,

nr
  θ  is the correlation parameter 

vector that has to be estimated by applying the maximum 

likelihood estimator (MLE); and ( , , )
i j

R θ x x is the 

correlation function of the stochastic process [43].  Usually, 

the correlation function is set to Gaussian form in 

engineering applications and expressed as 

 
2

, ,
1

( , , ) exp( (x x ) )
nr

i j l i l j l
l

R 


   θ x x  (2) 

where 
,

x
i l

is the l
th
 component of variable 

i
x .  Under the 

decomposition of Eq. (1) and θ, which is obtained to 

maximize MLE, 

 
 

1
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2

1
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2

n

L 


  
   

 
  

R y Fβ R y Fβ

 

(3) 

where R is the symmetric correlation matrix with i-j
th

 

component ( , , ), , 1,..., ,ij i jR R i j n θ x x  and 

2 T 11
( ) ( )

n



  y Fβ R y Fβ  and  

1
T 1 T 1


 β F R F F R Y  are 

obtained from the generalized least square regression. 

The objective of the Kriging method is to predict the 

noise-free unbiased response at a new point of interest 

denoted by x.  This prediction of response at x is written as a 

linear predictor as 

 
T

krigy (x) w y  (4) 

where
T

1 2
[ ( ), ( ),..., ( )]

n
w w ww x x x denotes the n×1 weight 

vector for prediction at x and is obtained using the unbiased 

condition [ ( )] [ ( )]krigE y E yx x  
as [42]   

 
1

2

1
( )

2


 w R r Fλ  (5) 

where λ is the Lagrange multiplier; and 
T

1
[ ( , , ),..., ( , , )]

n
R Rr θ x x θ x x  is the correlation vector 

between x and samples xi, i=1,…,n. 

Under the assumption of the Gaussian process, the 1α 
level prediction interval of the response is obtained as 

 
1 / 2 1 / 2

( ) ( ) ( ) ( ) ( )
p pkrig krigy Z y y Z

 
 

 
   x x x x x  (6) 
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where 
1 /2

Z


 is the 1α level quantile of the standard normal 

distribution and 
2
( )

p
 x  is the predicted variance at x given 

by 
2 2 T T 1 1 T 1
( ) (1 ( ) )

p
 

  
  x u F R F u r R r .  Therefore, the 

bandwidth of the prediction interval at a point of interest x0 

is 

 
1 / 2

( ) 2 ( )
p

d Z




x x  (7) 

and this prediction interval will be used as an accuracy 

measure to decide if the surrogate model is accurate or not. 

Depending on the basis functions fk(x) used in Eq. (1), the 

Kriging method is called the ordinary Kriging method, first-

order universal Kriging method, and second-order universal 

Kriging method, where basis functions with constant terms 

only, up to first-order polynomial terms, and up to second-

order polynomial terms, respectively, are used.  For both the 

ordinary and universal Kriging methods, the basis functions 

do not change during the surrogate model generation 

process.  However, in general, the higher-order terms can 

predict the nonlinear mean structure, and thus fixed-order 

basis functions may not be good to describe the nonlinearity 
of the mean structure.  On the other hand, it is also known 

that, in some cases, the accuracy of the surrogate model may 

deteriorate by using higher-order terms [44].  Therefore, it is 

desirable to find the optimal set of polynomial basis 

functions that could provide the most accurate surrogate 

model. 

First, the Dynamic Kriging (DKG) method dynamically 

selects the optimal set of basis functions at each design point 

so that the generated surrogate model has the best accuracy.  

As explained above, the accuracy is measured using the 

prediction interval bandwidth in Eq. (7).  To apply the DKG 

method to find the best basis function set, the highest-order 

P must first be determined.  With n samples given, Eq. (4) 

can be solved when the total number of basis functions is 

less than n, that is,  

   1P
nd P

n


  . (8) 

The highest order P of the polynomial that satisfies Eq. (8) 

is determined.  For example, if 10 samples are given (n=10) 

for a 2-D problem, the highest-order P will be 3 to satisfy 

Eq. (8) so that we can have basis functions up to third-order 

polynomials as 1, x1, x2, x1x2, x1
2
, x2

2
, x1

2
x2, x1x2

2
, x1

3
, and  

x2
3
.  After deciding the highest-order P, the genetic 

algorithm (GA) is used to find the best basis function set by 

minimizing the Kriging process variance 

2 T 11
( ) ( )

n



  y Fβ R y Fβ . 

Second, a generalized pattern search algorithm is used to 

find the optimal correlation parameter θ to maximize the 

MLE in Eq. (3).  Since it is not a gradient-based 
optimization method and guarantees the global convergence, 

which is proven by Lewis and Torczon [45], the pattern 

search algorithm is powerful enough to find the optimal θ. 

Using the GA for the best basis function set and the pattern 

search for the optimal θ, the studied examples show that the 

DKG method outperforms existing surrogate model 

generation methods including the universal Kriging method, 

the polynomial response surface method, the radial basis 

function method, the support vector regression method, and 

the blind Kriging method [42]. 
 

3. SAMPLING-BASED RBDO 
The mathematical formulation of a general RBDO problem 

is expressed as 

Tar

L U

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
jj F

nd nr

P G P j nc  

   

d

X

d d d d R X R

 (9) 

where T{ } , 1~id i nd  rv
d μ(X )  is the design vector, 

which is the mean value of the nd-dimensional random 

variable vector T

1 2={ ,  , ,  }ndX X Xrv
X ; T={ , }rv rp

X X X  

where rv
X  and rp

X  stand for the random design variable 

and random parameter components of the random input X , 

respectively; 
Tar

jFP  is the target probability of failure for the 

j
th

 constraint; and nc, nd, and nr are the number of 

probabilistic constraints, design variables, and random 

variables plus parameters, respectively. 

A reliability analysis for both the component and system 

levels involves calculation of the probability of failure, 

denoted by PF, which is defined using a multi-dimensional 

integral as 

 
( ) [ ] ( ) ( ; )

( )

nr F

F

F FP P I f d

E I





  

   

 X
R

ψ X x x ψ x

X
 (10) 

where ψ  is a vector of distribution parameters, which 

usually includes the mean (µ) and/or standard deviation (σ) 

of the random input  
T

1, , nrX XX ;  P   represents a 

probability measure; F  is the failure set; ( ; )f
X

x ψ  is a 

joint probability density function (PDF) of X; and  E   

represents the expectation operator.  The failure set is 

defined as  : ( ) 0
jF jG  x x  for component reliability 

analysis of the j
th

 constraint function Gj(x), and 

 1
: ( ) 0

nc

F jj
G


  x x  and  1

: ( ) 0
nc

F jj
G


  x x  for 

the series system and parallel system reliability analysis of 

nc performance functions, respectively.  ( )
F

I x  in Eq. (10) 

is called an indicator function and defined as 

 
1,

( )
0,F

F
I

otherwise



 


x
x  (11) 
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In this paper, since the mean of X,  
T

1, , nd μ  is used 

as a design vector, the vector of distribution parameters ψ  

is simply replaced with µ for the computation of the 

probability of failure in Eq. (10). 

Taking the partial derivative of probability of failure in 

Eq. (10) with respect to the i
th

 design variable i  yields 

 
( )

( ) ( ; )
nr F

F

i i

P
I f d

 


 


   X
R

μ
x x μ x  (12) 

and the differential and integral operators can be 

interchanged using the Leibniz‟s rule, giving 

 

( ) ( ; )
( )

ln ( ; )
( ) ( ; )

ln ( ; )
( )

nr F

nr F

F

F

i i

i

i

P f
I d

f
I f d

f
E I

 











 


 





 
  

 





X

R

X
X

R

X

μ x μ
x x

x μ
x x μ x

x μ
x  

(13) 

since ( )
F

I x  is not a function of i .  The partial derivative 

of the log function of the joint PDF in Eq. (13) with respect 

to i  is known as the first-order score function for i  and is 

denoted as 

 
(1) ln ( ; )

( ; ) .
i

i

f
s








X
x μ

x μ  (14) 

To compute the probability of failure in Eq. (10) and the 

sensitivity of probability of failure in Eq. (13), statistical 

sampling such as the Monte Carlo simulation (MCS) at a 

given design needs to be applied to true responses, which is 
computationally very expensive and almost prohibited.  

Hence, instead of using the true responses, which are usually 

obtained from computer simulations, the surrogate models 

obtained using the DKG method are used. 

Denote the surrogate model obtained by the DKG method 

for the constraint function Gj(X) as ˆ ( )jG X .  Then, by 

carrying out the MCS using the conservative surrogate 

model ˆ ( )jG X , the probabilistic constraints in Eq. (9) can be 

approximated as 

 
( ) Tar

ˆ

1

1
[ ( ) 0] ( )

j jFj

M
m

F j F

m

P P G I P
M 



   X x  (15) 

where M is the MCS sample size, ( )m
x  is the m

th
 realization 

of X, and the failure set ˆ
jF  for the surrogate model is 

defined as  ˆˆ : ( ) 0
jF jG  x x .  Sensitivity of the 

probabilistic constraint in Eq. (13) is obtained as 

 ( ) (1) ( )

ˆ

1

1
( ) ( ; )

j

iFj

M
F m m

mi

P
I s

M


 






 x x μ  (16) 

where (1) ( )( ; )
i

ms x μ  is obtained using Eq. (14).  

 

4. PARALLELIZATION OF SAMPLING-BASED 
RBDO 

As explained in Section 2, the DKG method uses the 

pattern search and genetic algorithm for more accurate 

surrogate model generation.  Hence, as the dimension of the 

complex engineering system increases, the DKG method and 

MCS for the reliability analysis using surrogate models 

become computationally inefficient.  Moreover, the number 
of samples required for computer simulations increases.  

Therefore, a high performance computing strategy needs to 

be implemented into the sampling-based RBDO procedure 

to ensure it is applicable for large-scale complex engineering 

applications. 

For the sampling-based RBDO using the DKG method, 

there exist three major places where the parallel computing 

can be applicable: parallelization of surrogate model 

generation for multiple constraints, parallelization of MCS 

for multiple surrogate models, and parallelization of 

computer simulations at samples.  The Matlab parallel 

computing toolbox and the parallel computing platform 

(LSF-Platform) are utilized for the first two parallelizations 

and for the last parallelization, respectively, of the sampling-

based RBDO with the DKG method. 

Compared with the gradient-based or MPP-based RBDO, 

the sampling-based RBDO has inherent advantages in terms 
of the parallelization.  In the MPP-based RBDO, the 

parallelization is limited to the number of constraints (nc), 

which means that even if numerous client computers are 

available it can only use nc client computers for the 

parallelized computing.  On the other hand, the sampling-

based RBDO can use as many client computers as the 

number of samples, which is usually more than the number 

of constraints for high dimensional problems.  In addition, 

the sampling-based RBDO has more places where the 

parallelization can be applicable.  Hence, in terms of the 

parallel computing, the sampling-based RBDO is more 

effective than the MPP-based RBDO [39]. 

 

4.1  Parallelization of Surrogate Models for 
Multiple Constraints in RBDO 

A typical RBDO problem contains more than one 

constraint.  Since the surrogate model from the DKG method 
is computationally expensive for high dimensional large-

scale applications, it is desirable to carry out the surrogate 

modeling for all constraints simultaneously, which leads to 

the parallelization of surrogate modeling for multiple 

constraints.  This parallelization is conducted by using the 

Matlab parallel computing tool-box.  
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4.2  Parallelization of MCS in Reliability Analysis 
The MCS in the sampling-based RBDO is used to 

calculate failure probabilities of performance functions as 

well as their sensitivities with respect to design variables.  

Usually, MCS requires a large number of samples for 

accurate results.  Moreover, since the prediction from the 

DKG method at the MCS samples is implicit, a large 

dimension matrix calculation is involved every time the 

prediction is calculated at each MCS point.  As the number 
of the MCS samples increases, the total computational time 

for the reliability and sensitivity analysis increases as well.  

Therefore, the parallelization of the MCS procedure is also 

needed to reduce the large computational time.  This 

parallelization is also conducted by using the Matlab parallel 

computing toolbox. 

 

4.3  Parallelization of Computer Aided 
Engineering (CAE) at Samples 

To generate surrogate models of the performance functions 

in RBDO by the DKG method, it is required to evaluate the 

performance functions at the sample points, which is usually 

conducted by computer simulation.  This procedure is 

computationally intensive for large-scale complex 

engineering applications.  If the number of the computer 

simulations is large for a large-scale engineering application, 

apparently, the total computational time of conducting the 
computer simulations for all samples may become 

unaffordable.  Therefore, the parallelization is necessary for 

this procedure.  Usually the computer simulation is carried 

out by general CAE commercial software and the 

parallelization can be done by the parallel computing 

platform (LSF-Platform). 

 

4.4  Summary of Parallelization in Sampling-
Based RBDO 

With all the discussion above, we can obtain the entire 

workflow of the parallelization in the sampling-based RBDO 

shown in Fig. 4, where a “core” means a unit in a multiple-

core desktop and a “node” means one client computer in a 

cluster network. 

 

5. NUMERICAL EXAMPLES 
This section illustrates two design optimization examples – 

a 2-D mathematical example and a 12-D M1A1 Abrams tank 

roadarm − to see how the proposed sampling-based RBDO 

works for an RBDO problem.  The 2-D mathematical 

example is used to show the accuracy and efficiency of the 

proposed method since its analytic functions are available, 

and thus the MCS is applicable for the comparison of the 

probability of failure calculation.  The 12-D M1A1 Abrams 

tank roadarm is used to see how the proposed sampling-

based RBDO works for a high-dimensional engineering 

application in terms of accuracy and efficiency.  In addition, 

using the roadarm example, the effectiveness of the 

parallelization is also explained.  For all examples, 1 million 

testing points are used for the DKG method, and 500,000 

MCS samples are used for the reliability and sensitivity 

analysis and the MCS sample number increases to 1 million 

when constraints are identified as active. 

 

 
 

Figure 4. Workflow of Parallelization in RBDO 

 

5.1  RBDO of 2-D Mathematical Problem 
Consider a 2-D mathematical RBDO problem, which is 

formulated to 
2 2
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Tar
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subject to    ( ( ( )) 0) 2.275%, 1 ~ 3

                    , and
j

j F

L U

d d d d

P G P j

   
  

   

   

d

X d

d d d d R X R

 (17) 

where three constraint functions are expressed as 
2

1 2

1

2 3 4

2

3 2

1 2

( ) 1
20

( ) 1 ( 6) ( 6) 0.6 ( 6)

80
( ) 1

8 5

X X
G

G Y Y Y Z

G
X X

 

         

 
 

X

X

X

 (1) 

where
1

2

0.9063 0.4226

0.4226 0.9063

XY

Z X




    
         

, and are drawn in Fig. 

5.  The properties of two random variables are shown in 

Table 5, and they are correlated with the Clayton copula 
(τ=0.5).  As shown in Eq. (17), the target probability of 

failure (
Tar

F
P ) is 2.275% for all constraints. 

As shown in Fig. 5 and Table 1, the initial design is d
0 

= 

[5,5]
T
.  At the initial design, the sampling-based 

deterministic design optimization (DDO) is first used to find 

the deterministic optimum, which is usually close to the 

RBDO optimum, and the sampling-based RBDO is launched 

at the deterministic optimum design.  This approach is more 

computationally efficient than launching the RBDO from the 

beginning.  As shown in Fig. 6, the DDO requires 30 
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samples, which are marked as asterisks in the figure, for the 

whole design iteration, and the deterministic optimum 

design is exactly identical to the optimum design obtained 

using analytic functions in Eq. (17).  At the deterministic 

optimum, the sampling-based RBDO is launched, with a 

total of 18 samples are initially used for the first iteration of 

the sampling-based RBDO.  Twenty more samples, which 

are marked as dots in Fig. 6, are generated for the sampling-

based RBDO whose result is shown in Table 2. 
 

 
Figure 5. Shape of Constraint Functions 

 

Table 1. Properties of Random Variables 

Random 

Variables 
Distribution d

L
 d

0
 d

U
 

Standard 

Deviation 

X1 Normal 0.0 5.0 10.0 0.3 

X2 Normal 0.0 5.0 10.0 0.3 

 

 
Figure 6. Sample Profile for DDO and RBDO 

 

Table 2 compares the numerical results of five different 
RBDO methods.  The first three results are obtained from 

the MPP-based RBDO, which requires sensitivities of 

constraint functions for the MPP search and design 

optimization.  This MPP-based RBDO includes the FORM 

[14] and the DRM [19] with three and five quadrature 

points, which are denoted in Table 2 as DRM3 and DRM5, 

respectively.  The results of the last two rows are obtained 

from the sampling-based RBDO, which uses the MCS for 

the estimation of the probability of failure and its sensitivity.  

The sampling-based RBDO using the DKG method is the 

proposed method, and to compare the accuracy of the 

proposed method, the result of the sampling-based RBDO 
using the analytic (true) functions given in Eq. (35) is also 

shown in the table. 

From the table, it can be seen that the probability of failure 

of the second constraint (1.2835%) estimated by the MCS 

with 50 million samples at the optimum design obtained 

using the FORM is not close to the target probability of 

failure (2.275%).  This is because the second constraint is 

highly nonlinear as shown in Fig. 6, and the FORM uses the 

transformation from original X-space to standard normalized 

U-space, which makes the constraint even more highly 

nonlinear due to the correlated nonlinear input.  For highly 

nonlinear functions, the FORM cannot accurately estimate 

the probability of failure since it uses the linear 

approximation of the nonlinear functions at the MPP in U-

space.  To improve the accuracy of the probability of failure 

at the optimum design, the MPP-based DRM with three or 

five quadrature points can be used [19]; Table 2 shows that 
the MPP-based DRM indeed improves the accuracy of the 

probability of failure at the optimum design with more 

function evaluations.  However, to obtain a more accurate 

optimum design, more quadrature points are required, such 

as the DRM7, etc.  To obtain the optimum design, the 

FORM uses 52 function evaluations and 52×2=104 

sensitivity calculations, whereas the MPP-based DRM with 

five quadrature points uses 146 function evaluations and 

102×2=104 sensitivity calculations, and the number of 

function evaluations for the MPP-based DRM will be 

increased as the number of quadrature points increases [19]. 

 

Table 2. Comparison of Various RBDOs ( = 2.275%
Tar

F
P ) 

 

On the other hand, the sampling-based RBDO shows very 

accurate optimum design since the optimum design is very 

Methods Cost 
Optimum 

Design 

MCS (50M) Number of 
Function 

Evaluations 
PF1, % PF2, % 

MPP-Based 

RBDO 

FORM -1.8742 5.0026, 1.6165 2.3022 1.2835 52+52×2 

DRM3 -1.8794 5.0315, 1.6050 2.2912 1.7496 128+106×2 

DRM5 -1.8821 5.0454, 1.5988 2.2621 2.0183 146+102×2 

Sampling- 

Based 
RBDO 

DKG -1.8845 5.0576, 1.5936 2.2716 2.2869 50 

Analytic 

Function 
-1.8853 5.0541, 1.5918 2.2912 2.2791 N.A. 
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close to the optimum design obtained using the analytic 

functions.  However, it requires only 50 samples, which is 

even less than the FORM, for the accurate optimum design 

without requiring the sensitivity of the performance 

functions.  The sampling-based RBDO can obtain a very 

accurate optimum design because it does not use any 

approximation on the calculation of the probability of 

failure, unlike the FORM and MPP-based DRM, and the 

DKG method generates very accurate surrogate models.  In 
addition, it can be said that the proposed efficiency strategies 

indeed work in this example.  Therefore, once surrogate 

models for constraint functions are accurate enough, the 

proposed sampling-based RBDO could obtain a very 

accurate optimum design with good efficiency.  

 

5.2  RBDO of M1A1 Abrams Tank Roadarm 
The roadarm of the M1A1 Abrams tank [19] is used to 

compare two approaches: the MPP-based RBDO, which 

requires sensitivities of performance functions, and the 

sampling-based RBDO, which does not require sensitivities 

of performance functions, for the component RBDO.  The 

roadarm is modeled using 1572 eight-node isoparametric 

finite elements (SOLID45) and four beam elements 

(BEAM44) of ANSYS [46], as shown in Fig. 7, and is made 

of S4340 steel with Young‟s modulus E=3.0×10
7
 psi and 

Poisson‟s ratio ν=0.3.  The durability analysis of the roadarm 
is carried out using Durability and Reliability Analysis 

Workspace (DRAW) [26] to obtain the fatigue life contour.  

The fatigue lives at the critical nodes are shown in Fig. 8, 

which are chosen as the design constraints of the RBDO. 

 

 
Figure 7. Finite Element Model of Roadarm 

 

 
Figure 8. Fatigue Life Contour at Critical Nodes of 

Roadarm 

 

The shape design variables are shown in Fig. 9.  Eight 

shape design variables characterize four cross-sectional 

shapes of the roadarm.  The widths (x1-direction) of the 

cross-sectional shapes are defined by the design variables d1, 

d3, d5, and d7 at intersections 1, 2, 3, and 4, respectively, and 

the heights (x3-direction) of the cross-sectional shapes are 

defined using the remaining four design variables.  Eight 

shape design variables are listed in Table 3 and are assumed 
to be independent random variables.  

 

 
Figure 9. Shape Design Variables for Roadarm 

 

For the input fatigue material properties, since the 

statistical information on S4340 steel other than its nominal 

value is not available, it is necessary to assume the statistical 

information on S4340 steel.  The strain-life relationship is 

given by the classical Coffin-Manson equation as [47]  

 (2 ) (2 )
2 2 2

s d
p f b ce

f f f
N N

E

  


 
     (19) 

where 
f

   and bs are the fatigue strength coefficient and 

exponent, respectively; 
f

 
 
and cd are the fatigue ductility 

coefficient and exponent, respectively; Nf is the fatigue 

initiation life; and E is the Young‟s modulus.  It is known 

that 
f

   and 
f

   follow the lognormal distribution and bs and 

cd follow the normal distribution.  Furthermore, it is also 

known that 
f

  , bs, and 
f

  , cd are highly negatively 

correlated [22].  For the correlated fatigue material 

properties, it is assumed that 
f

   and bs follow the Gaussian 

copula with ρ=−0.828 and that 
f

   and cd follow the Frank 

copula with τ=−0.906 [22].  For the standard deviations of 
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S4340 steel, 3% coefficients of variation (COV) for fatigue 

material properties are assumed as shown in Table 3.  It is 

known that fatigue strength parameters and fatigue ductility 

parameters are not correlated each other. 

 

Table 3. Random Variables and Fatigue Material 

Properties 

Random 

Variables 

Lower 

Bound 

dL 

Initial 

Design 

d0 

Upper 

Bound 

dU 
COV 

Distribution 

Type 

d1, in. 1.350 1.750 2.150 

1% Normal 

d2, in. 2.650 3.250 3.750 

d3, in. 1.350 1.750 2.150 

d4, in. 2.570 3.170 3.670 
d5, in. 1.356 1.756 2.156 

d6, in. 2.438 3.038 3.538 

d7, in. 1.352 1.752 2.152 

d8, in. 2.508 2.908 3.408 

Fatigue Material Properties 

Non-design Uncertainties Mean COV 
Distribution 

Type 

Fatigue Strength Coefficient, 

f, psi 
177000 

3% 

Lognormal 

Fatigue Strength Exponent, bs -0.0730 Normal 

Fatigue Ductility Coefficient, f 0.4100 Lognormal 

Fatigue Ductility Exponent, cd -0.6000 Normal 

 

The RBDO for the M1A1 Abrams tank roadarm is 
formulated to 

Tar

L U 8 12

minimize      Cost( )

subject to     [ ( ) 0] , 1, ,13

, and
j

j F
P G P j  

   

d

X

d d d d R X R

 (20) 

where 

Tar

Cost( ) : Weight of Roadarm

( )
( ) 1 , 1 ~ 13

( ) : Crack Initiation Fatigue Life,

: Crack Initiation Target Fatigue Life (=5 years)

2.275%

j

t

t

F

L
G j

L

L

L

P

  



d

d
d

d  (21) 

For the sampling-based DDO, 15 samples are used as the 

initial number of samples in the local window.  Smaller local 

window is used for the DDO since the accuracy of the 

surrogate model near a given design is required for 

sensitivity calculation and there is no need of reliability 

analysis.  After 11 iterations, the sampling-based DDO 

converged to the optimum design, using 135 samples.  The 

optimum design obtained using the sampling-based DDO is 

almost identical with the optimum design obtained using the 

sensitivity-based DDO as shown in Table 4.  The sensitivity-

based DDO requires 11 function and 11 sensitivity 

evaluations as shown in Table 4, where F.E. stands for 
„function evaluation‟.  One sensitivity evaluation includes 

sensitivity calculations for all design variables, so it requires 

11×8=88 sensitivity calculations in this example, whereas 

the sampling-based DDO requires a total of 135 samples for 

the surrogate model generation using the DKG method.  

 
Table 4. Comparison of Optimum Designs 

Design 
Variable 

Initial 
Sensitivity-Based Sampling-Based 

DDO RBDO DDO RBDO 

d1 1.750 1.653 1.711 1.653 1.705 

d2 3.250 2.650 2.650 2.650 2.650 

d3 1.750 1.922 1.943 1.922 1.941 
d4 3.170 2.570 2.570 2.570 2.570 

d5 1.756 1.478 1.514 1.478 1.508 

d6 3.038 3.287 3.348 3.287 3.352 

d7 1.752 1.630 1.691 1.630 1.702 
d8 2.908 2.508 2.508 2.508 2.508 

# of F.E.  11+11×8 85+85×12 135 691 

Active 
Constraints 

 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 

Cost 515.09 466.80 474.20 466.81 474.60 

 

The sampling-based RBDO is launched at the DDO.  In 

this case, samples used for the DDO cannot be used for the 

RBDO unlike the mathematical example because the 

dimension of the DDO is 8, whereas the dimension of the 

RBDO is 12.  The number of initial samples within the local 

window is 200.  It is found that 4 out of 13 performance 

functions are very feasible at the deterministic optimum.  

Hence, surrogate models for those performance functions are 

not generated to save the computation time.  Table 4 also 

compares two RBDO optimum designs obtained using the 

sensitivity-based and sampling-based RBDO.  The FORM is 

used for the sensitivity-based RBDO.  

From the table, it can be seen that two optimum designs 

are very close to each other.  At the optimum design 

obtained using the sampling-based RBDO, the MSE of the 
surrogate model is 0.0062, which is much less than the target 

MSE (0.01) and means that surrogate model at the optimum 

design is accurate enough.  To obtain the optimum design 

using the FORM, 85 function and 85×12=1020 sensitivity 

evaluations are used since there exist 8 random design 

variables and 4 random parameters, whereas the sampling-

based RBDO uses 691 samples, which means 691 function 

evaluations, to find the optimum design.  

 

5.3  Efficiency of Parallel Computing 
It is noted that one license of the Matlab parallel 

computing toolbox allows 8 cores working simultaneously, 

therefore 8 surrogate models for constraints are generated at 

the same time.  Thus, using the parallelization explained in 

Sections 4.1 and 4.2, the computation time is maximally 8 

times faster than the one without the parallelization.  

However, the number of cores used for the parallelization 
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can be extended if parallel computing software other than 

the Matlab toolbox is utilized. 

To demonstrate the improvement of the efficiency by 

applying the parallelization to the sampling-based RBDO 

using the DKG method, the same M1A1 Abrams tank 

roadarm example in Section 5.2 is used.  The comparison 

between the parallel computing and the original serial 

computing is carried out by running the reliability analysis at 

the deterministic optimum design with 250 points in the 
local window.  Nine constraints are identified as active or 

violated constraints at the deterministic optimum design and 

thus surrogate models are generated for those 9 constraints 

only.  

As shown in Table 5, the parallel computing reduces the 

computational time by 72.7% for surrogate modeling and 

67.4% for the MCS.  The reason that the reduction of the 

computational time for the surrogate modeling and MCS is 

not exact 8 times compared with the serial one is that there 

are nine active or violated constraints used to generate the 

surrogate models while eight cores are used for the 

parallelization.  Therefore, it includes 2 iterations for the 

parallel computing, 1
st
 iteration for the 1

st
 ~ 8

th
 constraints 

and 2
nd

 iteration for the 9
th
 constraint only. 

 

Table 5. Comparison of Computational Time 

Method 
No. of 

Samples 

No. of 

Constraints 

Surrogate 

Modeling, 

sec. 

MCS, 

sec. 

Parallel 
250 9 

129.73 337.82 

Serial 474.43 1034.79 

 

In this example, the 3
rd

 parallelization explained in Section 

4.3, which is the parallelization of FEA, is not used; instead, 

only one client computer is used for the test.  If 50 client 

computers are used for this test, computer simulation time 

for the FEA will be almost 50 times faster since the data 

transmission for the parallelization is negligible.  

Furthermore, the MPP-based RBDO can use maximally 13 

client computers only since there are 13 constraints for the 

M1A1 Abrams tank roadarm.  On the other hand, the 

sampling-based RBDO can use as many client computers as 

the number of samples used.  The parallelization of FEA is 
being tested on the U.S. Army TARDEC high performance 

computing (HPC) system.  

 

6. CONCLUSION 
For broader applications, sampling-based RBDO using the 

DKG method for surrogate model generation and the score 

function for probability of failure and its sensitivity analysis 

is proposed in this study.  The proposed sampling-based 

RBDO does not use any approximation on the calculation of 

the probability of failure and its sensitivity except for 

statistical noise due to the MCS, which can be easily solved 

by increasing the MCS sample set.  Furthermore, the 

proposed method does not use the transformation from the 

original X-space to the standard normal U-space, which 

makes performance functions become more highly 

nonlinear, especially when random inputs are correlated.  

Therefore, the proposed sampling-based RBDO is more 

accurate than the sensitivity-based RBDO, which uses 

approximation and transformation for the probability of 
failure estimation once surrogate models are sufficiently 

accurate.  The accuracy issue of surrogate models is resolved 

in this paper by the use of the DKG method.  In addition, to 

enhance the efficiency of the proposed method for high-

dimensional problems, the parallel computing is used.  Even 

though only component level RBDO examples are treated in 

this paper, the proposed sampling-based RBDO can be 

easily extended to the system-level RBDO by using the 

failure set of either series or parallel or mixed system.  

Numerical examples are illustrated to demonstrate how the 

proposed sampling-based RBDO works compared with the 

sensitivity-based RBDO.  The 2-D mathematical example 

shows that the proposed method is more accurate and even 

more efficient than the sensitivity-based RBDO, which 

means the proposed method is very powerful when the 

dimension of problems is low.  For high-dimensional 

problems such as the M1A1 Abrams tank roadarm used in 
the paper, the sampling-based RBDO still yields an accurate 

optimum design.  However, it may require more function 

evaluation, which can be resolved by parallelizing the 

computation procedure. 
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